

KEGEL LANDMARK PATTERNS

KEGELLANDMARK PATTERNS

CHALLENGE SERIES

TOWER OF PISA 3541

Also known as the Leaning Tower of Pisa, this pattern is asymmetric in design with a shift to the inside on the left, or if looking at it from another perspective, a shift to the outside on the right. At 41' in length, this oil pattern retains much of its shape throughout the entire length of the pattern, just like the Tower of Pisa does.

Latitude Ratio Coordinates

22′ 3.5 to 1 39′ 1.9 to 1

Longitude Ratio Coordinates

Outside Taper 7.2 to 1 Inside Taper 9.6 to 1

Pattern Distance

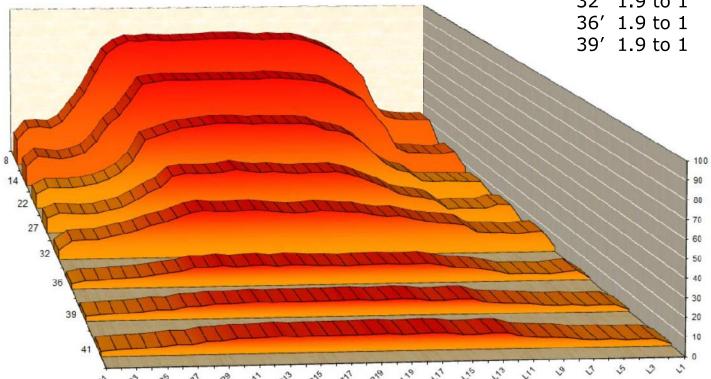
41 Feet

Pattern Volume

Forward 14.38 mL Reverse 10.60 mL Total 24.98 ml

KEGELLANDMARK PATTERNS

CHALLENGE SERIES



TOWER OF PISA 3541

Latitude Ratio Coordinates

14' 3.3 to 1 22' 3.5 to 1 27' 2.7 to 1 32' 1.9 to 1 36' 1.9 to 1 39' 1.9 to 1

8' 2.5 to 1

The 2D Chart above was generated by the Lane Reader showing select tapes and ratios at key distances throughout the oil pattern. USBC Sport Bowling ratios are calculated at 22' and 2' before the end of the oil pattern. **KEGEL KODE Ratios** are determined by the highest Sport Bowling ratio number for that oil pattern.

KEGEL TIP - Generally, the lower the ratios towards the end of the oil pattern, the less guidance of the bowling ball and therefore, the more difficult the oil pattern may play. The higher the ratios are towards the end of the oil pattern, the easier it may play.

KEGELLANDMARK PATTERNS

CHALLENGE SERIES

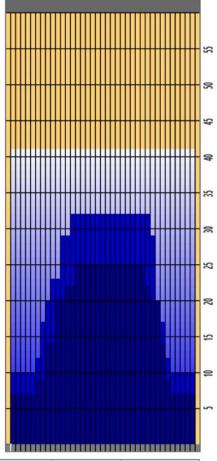
This page shows the **KOSI FLEX LANE MACHINE** program sheet.


The **HEADER** shows the oil pattern distance, the reverse brush drop distance, the amount of lane conditioner applied to the lane, the oil per board setting, and the conditioner type in each tank.

Below that is the **FLEX LANE MACHINE PROGRAM** settings
which shows the load structure
and number of loads, the oil
pump setting if using the multi
mic stream feature, the speed
of the lane machine, the buffer
speed, and the tank choice per
load screen.

The **OVERHEAD CHART** on the far right shows where the conditioner is applied on both the forward and reverse pass. The gradient area is a calculation of how the conditioner might bleed off the buffer brush.

The **COMPOSITE GRAPH** at the bottom shows the total amount of conditioner applied to every board along with that volume ratio in different zones.


A good way to think about the composite graph is to envision all the conditioner on the lane being pushed back to the foul line. Once all the conditioner is stacked up, this is what it would look like.

2 7L 7R 1 45 14 3 A 27 7.9 9.8 1.9 1215 3 9L 8R 2 40 18 3 A 48 9.8 14.9 5.1 1920 4 11L 9R 2 40 18 3 A 42 14.9 20.0 5.1 1680 5 13L 11R 1 40 18 3 A 17 20.0 22.5 2.5 680 6 15L 12R 1 40 18 3 A 14 22.5 25.0 2.5 560 7 2L 2R 0 40 22 3 A 0 25.0 34.0 9.0		START	STOP	LOADS	MICS	SPEED	BUFFER	TANK	CROSSED	START	END	FEET	T.OIL
3 9L 8R 2 40 18 3 A 48 9.8 14.9 5.1 1920 4 11L 9R 2 40 18 3 A 42 14.9 20.0 5.1 1680 5 13L 11R 1 40 18 3 A 17 20.0 22.5 2.5 680 6 15L 12R 1 40 18 3 A 17 20.0 22.5 25.0 25.0 560 7 2L 2R 0 40 22 3 A 0 25.0 34.0 9.0	1	2L	2R	5	45	14	3	A	185	0.0	7.9	7.9	8325
4 11L 9R 2 40 18 3 A 42 14.9 20.0 5.1 168t 5 13L 11R 1 40 18 3 A 17 20.0 22.5 2.5 68t 6 15L 12R 1 40 18 3 A 14 22.5 25.0 2.5 56t 7 2L 2R 0 40 22 3 A 0 25.0 34.0 9.0	2	7L	7R	1	45	14	3	A	27	7.9	9.8	1.9	1215
5 13L 11R	3	9L	8R	2	40	18	3	A	48	9.8	14.9	5.1	1920
6 15L 12R 1 40 18 3 A 14 22.5 25.0 2.5 566 7 2L 2R 0 40 22 3 A 0 25.0 34.0 9.0	4	11L	9R	2	40	18	3	A	42	14.9	20.0	5.1	1680
7 2L 2R 0 40 22 3 A 0 25.0 34.0 9.0 0	5	13L	11R	1	40	18	3	A	17	20.0	22.5	2.5	680
	6	15L	12R	1	40	18	3	A	14	22.5	25.0	2.5	560
8 2L 2R 0 40 30 2 A 0 34.0 41.0 7.0 (7	2L	2R	0	40	22	3	A	0	25.0	34.0	9.0	0
	8	2L	2R	0	40	30	2	A	0	34.0	41.0	7.0	0

2L					BUFFER	TANK	CROSSED	START	END	FEET	T.OIL
-	2R	0	50	30	1	В	0	41.0	32.0	-9.0	0
14L	11R	1	50	22	3	В	16	32.0	28.9	-3.1	800
12L	10R	2	50	22	3	В	38	28.9	22.7	-6.2	1900
10L	10R	1	50	22	3	В	21	22.7	19.6	-3.1	1050
9L	9R	1	50	18	4	В	23	19.6	17.1	-2.5	1150
8L	8R	2	50	18	4	В	50	17.1	12.0	-5.1	2500
7L	7R	1	50	18	4	В	27	12.0	9.5	-2.5	1350
2L	2R	1	50	14	4	В	37	9.5	7.6	-1.9	1850
2L	2R	0	50	14	4	В	0	7.6	0.0	-7.6	0
	12L 10L 9L 8L 7L 2L	12L 10R 10L 10R 9L 9R 8L 8R 7L 7R 2L 2R	12L 10R 2 10L 10R 1 9L 9R 1 8L 8R 2 7L 7R 1 2L 2R 1	12L 10R 2 50 10L 10R 1 50 9L 9R 1 50 8L 8R 2 50 7L 7R 1 50 2L 2R 1 50	12L 10R 2 50 22 10L 10R 1 50 22 9L 9R 1 50 18 8L 8R 2 50 18 7L 7R 1 50 18 2L 2R 1 50 14	12L 10R 2 50 22 3 10L 10R 1 50 22 3 9L 9R 1 50 18 4 8L 8R 2 50 18 4 7L 7R 1 50 18 4 2L 2R 1 50 14 4	12L 10R 2 50 22 3 B 10L 10R 1 50 22 3 B 9L 9R 1 50 18 4 B 8L 8R 2 50 18 4 B 7L 7R 1 50 18 4 B 2L 2R 1 50 14 8 B	12L 10R 2 50 22 3 B 38 10L 10R 1 50 22 3 B 21 9L 9R 1 50 18 4 B 23 8L 8R 2 50 18 4 B 50 7L 7R 1 50 18 4 B 27 2L 2R 1 50 14 4 B 37	12L 10R 2 50 22 3 B 38 28.9 10L 10R 1 50 22 3 B 21 22.7 9L 9R 1 50 18 4 B 23 19.6 18. 8R 2 50 18 4 B 50 17.1 7L 7R 1 50 18 4 B 27 12.0 2L 2R 1 50 14 4 B 37 9.5	12L 10R 2 50 22 3 B 38 28.9 22.7 10L 10R 1 50 22 3 B 21 22.7 19.6 9L 9R 1 50 18 4 B 23 19.6 17.1 12.0 18 L 8R 2 50 18 4 B 50 17.1 12.0 7.1 7.8 1 50 18 4 B 27 12.0 9.5 2L 2R 1 50 14 4 B 37 9.5 7.6	12L 10R 2 50 22 3 B 38 28.9 22.7 -6.2 10L 10R 1 50 22 3 B 21.7 19.6 -3.1 9L 9R 1 50 18 4 B 23 19.6 17.1 -2.5 18L 8R 2 50 18 4 B 50 17.1 12.0 -5.1 7L 7R 1 50 18 4 B 27 12.0 9.5 -2.5 2L 2R 1 50 14 4 B 37 9.5 7.6 -1.9

Cleaner Ratio Main Mix 4:1
Cleaner Ratio Back End Mix 4:1
Cleaner Ratio Back End Distance 59
Buffer RPM: 4 = 700 | 3 = 500 | 2 = 200 | 1 = 60

Item	3L-7L:18L-18R	8L-12L:18L-18R	13L-17L:18L-18R	18L-18R:17R-13R	18L-18R:12R-8R	18L-18R:7R-3R
Description	Outside Track:Middle	Middle Track:Middle	Inside Track:Middle	Middle: Inside Track	Middle:Middle Track	Middle:Outside Track
rack Zone Ratio	3.27	1.46	1.03	1	1.22	3.27
1500						
1200						
1200 — 1050 — 900 —				<u> </u>		
1200 —						
1200 —						
1200 —						3-3-3-3

KEGEL TIP - Once the amount of conditioner on the corners (outsides) reaches 300 microliters, an oil pattern begins to become "competitive". Less than that amount the ball might see friction and it could play on the easy side.